-
Research
-
Publications
-
All publications
-
Benner, SA
-
Biondi, E
-
Bradley, K
-
Gerloff, D
-
Hoshika, S
-
Hutter, D
-
Karalkar, N
-
Kim, HJ
-
Kim, MJ
-
Laos, R
-
Leal, NA
-
Shaw, RW
-
Yang, ZY
-
Yaren, O
-
People
-
Benner, Steven
-
Biondi, Elisa
-
Bradley, Kevin
-
Gerloff, Dietlind
-
Hoshika, Shuichi
-
Hutter, Daniel
-
Karalkar, Nilesh
-
Kim, Hyo-Joong
-
Kim, Myong-Jung
-
Laos, Roberto
-
Leal, Nicole
-
Shaw, Ryan
-
Yang, Zunyi
-
Yaren, Ozlem
-
Software
-
News and Events
-
Press Coverage
-
Blog
-
Our Foundation
|
Distinguished Fellow
Steven Benner
Education
- BS in Molecular Biophysics and Biochemistry. Yale University (1976)
- MS in Molecular Biophysics and Biochemistry. Yale University (1976)
- PhD in Chemistry. Harvard University (1979)
Research summary
The Benner group has:
- Initiated synthetic biology as a field. The Benner group was the first to synthesize a gene for an enzyme, and used organic synthesis to prepare the first artificial genetic systems. These systems have been used to direct the synthesis of artificial proteins having unnatural amino acids, in FDA-approved clinical assays for HIV, hepatitis B and hepatitis C that improves the medical care of over 400,000 patients annually, and to support the first artificial chemical system capable of Darwinian evolution.
- Invented dynamic combinatorial chemistry, combining ideas from molecular evolution, enzymology, analytical chemistry, and organic chemistry to generate a strategy to discover small molecule therapeutic leads. A German company, Alantos, is today using this technology to develop drug leads.
- Established paleomolecular biology, where researchers resurrect ancestral proteins from extinct organisms for study in the laboratory, The strategy allows scientists to connect chemistry to function in biology, which is defined by an organism's fitness in a complex and changing environment.
- Helped found evolutionary bioinformatics, in 1991, launched one of the first web-based bioinformatics servers with Gaston Gonnet, generated the first naturally organized protein sequence databases, and helped develop the MasterCatalog that generated ca. $4 million in sales. This work also supported the first exhaustive matching of a modern protein sequence database, the first convincing tools to predict structure in proteins from sequence data, strategies to detect distant homologs using structure prediction, and "post-genomic" tools to detect changing protein function.
Awards
- National Science Foundation Graduate Fellow
- Junior Fellowship, Harvard Society of Fellows
- Dreyfus Award for Young Faculty, 1982
- Searle Scholar, 1984-86
- Sloan Foundation Fellow, 1984-86
- Anniversary Prize, Federation of European Biochemical Societies, 1993
- Nolan Summer Award, 1998
- Arun Gunthikonda Memorial Award, 1998
- Townes R. Leigh Commemorative Professor, 1999
- B. R. Baker Award, 2001
- Sigma Xi Senior Faculty Award 2005
- Fellow of the American Association for the Advancement of Science (Biology) 2015
- Honoris Causa, University of Croatia, Romania 2016
- Fellow of the International Society for the Study of the Origin of Life (ISSOL) 2017
Recent Publications
Fluorinated oil-surfactant mixtures with the density of water: Artificial cells for synthetic biology
Roberto Laos, Steven Benner
PLOS One
17 (1) , Public Library of Science (2022) https://doi.org/10.1371/journal.pone.0252361
<Abstract>
There is a rising interest in biotechnology for the compartmentalization of biochemical reactions in water droplets. Several applications, such as the widely used digital PCR, seek to encapsulate a single molecule in a droplet to be amplified. Directed evolution, another technology with growing popularity, seeks to replicate what happens in nature by encapsulating a single gene and the protein encoded by this gene, linking genotype with phenotype. Compartmentalizing reactions in droplets also allows the experimentalist to run millions of different reactions in parallel. Compartmentalization requires a fluid that is immiscible with water and a surfactant to stabilize the droplets. While there are fluids and surfactants on the market that have been used to accomplish encapsulation, there are reported concerns with these. Span® 80, for example, a commonly used surfactant, has contaminants that interfere with various biochemical reactions. Similarly, synthetic fluids distributed by the cosmetic industry allow some researchers to produce experimental results that can be published, but then other researchers fail to reproduce some of these protocols due to the unreliable nature of these products, which are not manufactured with the intent of being used in biotechnology. The most reliable fluids, immiscible with water and suitable for biochemical reactions, are fluorinated fluids. Fluorinated compounds have the peculiar characteristic of being immiscible with water while at the same time not mixing with hydrophobic molecules. This peculiar characteristic has made fluorinated fluids attractive because it seems to be the basis of their being biologically inert. However, commercially available fluorinated fluids have densities between 1.4 to 1.6 g/mL. The higher-than-water density of fluorinated oils complicates handling of the droplets since these would float on the fluid since the water droplets would be less dense. This can cause aggregation and coalescence of the droplets. Here, we report the synthesis, characterization, and use of fluorinated polysiloxane oils that have densities similar to the one of water at room temperature, and when mixed with non-ionic fluorinated surfactants, can produce droplets encapsulating biochemical reactions. We show how droplets in these emulsions can host many biological processes, including PCR, DNA origami, rolling circle amplification (RCA), and Taqman® assays. Some of these use unnatural DNA built from an Artificially Expanded Genetic Information System (AEGIS) with six nucleotide "letters".
Catalytic Synthesis of Polyribonucleic Acid on Prebiotic Rock Glasses
Craig A. Jerome, Hyo-Joong Kim, Stephen J. Mojzsis, Steven A. Benner, and Elisa Biondi
Astrobiology
(2022) http://doi.org/10.1089/ast.2022.0027
<Abstract>
Reported here are experiments that show that ribonucleoside triphosphates are converted to polyribonucleic acid when incubated with rock glasses similar to those likely present 4.3-4.4 billion years ago on the Hadean Earth surface, where they were formed by impacts and volcanism. This polyribonucleic acid averages 100-300 nucleotides in length, with a substantial fraction of 3',-5'-dinucleotide linkages. Chemical analyses, including classical methods that were used to prove the structure of natural RNA, establish a polyribonucleic acid structure for these products. The polyribonucleic acid accumulated and was stable for months, with a synthesis rate of 2 x 10-3 pmoles of triphosphate polymerized each hour per gram of glass (25°C, pH 7.5). These results suggest that polyribonucleotides were available to Hadean environments if triphosphates were. As many proposals are emerging describing how triphosphates might have been made on the Hadean Earth, the process observed here offers an important missing step in models for the prebiotic synthesis of RNA.
When Did Life Likely Emerge on Earth in an RNA-First Process?
S. A. Benner, E. A. Bell, E. Biondi, R. Brasser, T. Carell, H.-J. Kim, S. J. Mojzsis, A. Omran, M. A. Pasek, D. Trail
ChemSystemsChem
2 , Chemistry Europe (2020) e1900035
<Abstract>
The widespread presence of ribonucleic acid (RNA) catalysts and cofactors in the Earth's biosphere today suggests that RNA was the first biopolymer to support Darwinian evolution. However, most "path-hypotheses" to generate building blocks for RNA require reduced nitrogen-containing compounds not made in useful amounts in the CO2-N2-H2O atmospheres of the Hadean. We review models for Earth's impact history that invoke a single ~1023 kg impactor (Moneta) to account for measured amounts of platinum, gold, and other siderophilic ("iron-loving") elements on the Earth and Moon. If it were the last sterilizing impactor, by reducing the atmosphere but not the mantle Moneta, would have opened a "window of opportunity" for RNA synthesis, a period when RNA precursors rained from the atmosphere onto land holding oxidized minerals that stabilize advanced RNA precursors and RNA. Surprisingly, this combination of physics, geology, and chemistry suggests a time when RNA formation was most probable, ~120±100 million years after Moneta's impact, or ~4.36±0.1 billion years ago. Uncertainties in this time are driven by uncertainties in rates of productive atmosphere loss and amounts of sub-aerial land.
Hachimoji DNA and RNA: A genetic system with eight building blocks
Hoshika H, Leal N, Kim MJ, Kim MS, Karalkar NB, Kim HJ, Bates AM, Watkins Jr. NE, SantaLucia HA, Meyer AJ, DasGupta S, Piccirilli JA, Ellington AD, SantaLucia Jr. J, Georgiadis MM, Benner SA
Science
(2019) 22 Feb 2019: Vol. 363, Issue 6429, pp. 884-887. DOI: 10.1126/science.aat0971
<Abstract>
We report DNA- and RNA-like systems built from eight nucleotide "letters" (hence the name "hachimoji") that form four orthogonal pairs. These synthetic systems meet the structural requirements needed to support Darwinian evolution, including a polyelectrolyte backbone, predictable thermodynamic stability, and stereoregular building blocks that fit a Schrödinger aperiodic crystal. Measured thermodynamic parameters predict the stability of hachimoji duplexes, allowing hachimoji DNA to increase the information density of natural terran DNA. Three crystal structures show that the synthetic building blocks do not perturb the aperiodic crystal seen in the DNA double helix. Hachimoji DNA was then transcribed to give hachimoji RNA in the form of a functioning fluorescent hachimoji aptamer. These results expand the scope of molecular structures that might support life, including life throughout the cosmos.
The surprising pairing of 2-aminoimidazo[1,2-a]-
[1,3,5]triazin-4-one, a component of an expanded
DNA alphabet
Roberto Laos, Christos Lampropoulos, and Steven A. Benner
Structural Chemistry
, Acta Crystallographica (2019) C75, 22-28, https://doi.org/10.1107/S2053229618016923
<Abstract>
Synthetic biologists demonstrate their command over natural biology by
reproducing the behaviors of natural living systems on synthetic biomolecular
platforms. For nucleic acids, this is being done stepwise, first by adding replicable
nucleotides to DNA, and then removing its standard nucleotides. This challenge
has been met in vitro with 'six-letter' DNA and RNA, where the Watson-Crick
pairing 'concept' is recruited to increase the number of independently replicable
nucleotides from four to six. The two nucleobases most successfully added so far
are Z and P, which present a donor-donor-acceptor and an acceptor-acceptor-
donor pattern, respectively. This pair of nucleobases are part of an 'artificially
expanded genetic information system' (AEGIS). The Z nucleobase has been
already crystallized, characterized, and published in this journal [Matsuura et al.
(2016). Acta Cryst. C72, 952-959]. More recently, variants of Taq polymerase
have been crystallized with the pair P:Z trapped in the active site. Here we
report the crystal structure of the nucleobase 2-aminoimidazo[1,2-a][1,3,5]-
triazin-4-one (trivially named P) as the monohydrate, C5H5N5O-H2O. The
nucleobase P was crystallized from water and characterized by X-ray diffraction.
Interestingly, the crystal structure shows two tautomers of P packed in a
Watson-Crick fashion that cocrystallized in a 1:1 ratio.
Prebiotic Chemistry that Could Not Not Have Happened
Benner S.A., Kim H.-J., and Biondi E.
Life
9 (4) , MDPI 84 (2019) https://doi.org/10.3390/life9040084
<Abstract>
We present a direct route by which RNA might have emerged in the Hadean from a fayalite-magnetite mantle, volcanic SO2 gas, and well-accepted processes that must have created substantial amounts of HCHO and catalytic amounts of glycolaldehyde in the Hadean atmosphere. In chemistry that could not not have happened, these would have generated stable bisulfite addition products that must have rained to the surface, where they unavoidably would have slowly released reactive species that generated higher carbohydrates. The formation of higher carbohydrates is self-limited by bisulfite formation, while borate minerals may have controlled aldol reactions that occurred on any semi-arid surface to capture that precipitation. All of these processes have well-studied laboratory correlates. Further, any semi-arid land with phosphate should have had phosphate anhydrides that, with NH3, gave carbohydrate derivatives that directly react with nucleobases to form the canonical nucleosides. These are phosphorylated by magnesium borophosphate minerals (e.g., luneburgite) and/or trimetaphosphate-borate with Ni2+ catalysis to give nucleoside 5'-diphosphates, which oligomerize to RNA via a variety of mechanisms. The reduced precursors that are required to form the nucleobases came, in this path-hypothesis, from one or more mid-sized (1023-1020 kg) impactors that almost certainly arrived after the Moon-forming event. Their iron metal content almost certainly generated ammonia, nucleobase precursors, and other reduced species in the Hadean atmosphere after it transiently placed the atmosphere out of redox equilibrium with the mantle. In addition to the inevitability of steps in this path-hypothesis on a Hadean Earth if it had semi-arid land, these processes may also have occurred on Mars. Adapted from a lecture by the Corresponding Author at the All-Russia Science Festival at the Lomonosov Moscow State University on 12 October 2019, and is an outcome of a three year project supported by the John Templeton Foundation and the NASA Astrobiology program. Dedicated to David Deamer, on the occasion of his 80th Birthday.
Affinity maturation of a portable Fab-RNA module for
chaperone-assisted RNA crystallography
Deepak Koirala, Sandip A. Shelke, Marcel Dupont, Stormy Ruiz, Saurja DasGupta, Lucas J. Bailey, Steven A. Benner and Joseph A. Piccirilli
Nucl. Acids Res.
1-12 (2018) doi: 10.1093/nar/gkx1292
<Abstract>
Antibody fragments such as Fabs possess properties
that can enhance protein and RNA crystallization
and therefore can facilitate macromolecular structure
determination. In particular, Fab BL3-6 binds to
an AAACA RNA pentaloop closed by a GC pair with
~100 nM affinity. The Fab and hairpin have served
as a portable module for RNA crystallization. The potential
for general application make it desirable to
adjust the properties of this crystallization module
in a manner that facilitates its use for RNA structure
determination, such as ease of purification, surface
entropy or binding affinity. In this work, we used both
in vitro RNA selection and phage display selection to
alter the epitope and paratope sides of the binding
interface, respectively, for improved binding affinity.
We identified a 5'-GNGACCC-3' consensus motif in
the RNA and S97N mutation in complimentarity determining
region L3 of the Fab that independently impart
about an order of magnitude improvement in affinity,
resulting from new hydrogen bonding interactions.
Using a model RNA, these modifications facilitated
crystallization under a wider range of conditions and
improved diffraction. The improved features of the
Fab-RNA module may facilitate its use as an affinity
tag for RNA purification and imaging and as a chaperone
for RNA crystallography.
A Direct Prebiotic Synthesis of Nicotinamide Nucleotide
Hyo-Joong Kim, Steven A. Benner
Chemistry
, Wiley-VCH (2018) Jan 12;24(3):581-584. doi: 10.1002/chem.201705394
<Abstract>
Under the "RNA World" hypothesis, an early episode of
natural history on Earth used RNA as the only genetically encoded
molecule to catalyze steps in its metabolism catalysis. This, according
to the hypothesis, included RNA catalysts that used RNA cofactors.
However, the RNA World hypothesis places special demands on
prebiotic chemistry, which must now deliver not only four
ribonucleosides, but also must deliver the "functional" portion of these
RNA cofactors. While some (e.g. methionine) present no particular
challenges, nicotinamide ribose is special. Essential to its role in
biological oxidations and reductions, its glycosidic bond that holds a
positively charged heterocycle is especially unstable with respect to
cleavage. Nevertheless, we are able to report here a prebiotic
synthesis of phosphorylated nicotinamide ribose under conditions that
also conveniently lead to the adenosine phosphate components of
this and other RNA cofactors.
Artificially Expanded Genetic Information Systems
for New Aptamer Technologies
Elisa Biondi and Steven A. Benner
Biomedicines
, MDPI (2018) 6, 53; doi:10.3390/biomedicines6020053
<Abstract>
Directed evolution was first applied to diverse libraries of DNA and RNA molecules a
quarter century ago in the hope of gaining technology that would allow the creation of receptors,
ligands, and catalysts on demand. Despite isolated successes, the outputs of this technology have been
somewhat disappointing, perhaps because the four building blocks of standard DNA and RNA have
too little functionality to have versatile binding properties, and offer too little information density
to fold unambiguously. This review covers the recent literature that seeks to create an improved
platform to support laboratory Darwinism, one based on an artificially expanded genetic information
system (AEGIS) that adds independently replicating nucleotide "letters" to the evolving "alphabet".
Mineral-Organic Interactions in Prebiotic
Synthesis. The Discontinuous Synthesis Model for the Formation of RNA in Naturally Complex Geological Environments.
Steven A. Benner, Hyo-Joong Kim, and Elisa Biondi
Nucl. Acids & Mol. Bio.
35 , Springer 31-83 (2018) https://doi.org/10.1007/978-3-319-93584-3_3
<Abstract>
A common criticism of "prebiotic chemistry research" is that it is done
with starting materials that are too pure, in experiments that are too directed, to get
results that are too scripted, under conditions that could never have existed on Earth.
Planetary scientists in particular remark that these experiments often arise simply
because a chemist has a "cool idea" and then pursues it without considering external
factors, especially geological and planetary context. A growing literature addresses
this criticism and is reviewed here. We assume a model where RNA emerged
spontaneously from a prebiotic environment on early Earth, giving the planet its
first access to Darwinism. This "RNA First Hypothesis" is not driven by the intrinsic
prebiotic accessibility; quite the contrary, RNA is a "prebiotic chemist's nightmare."
However, by assuming models for the accretion of the Earth, the formation of the
Moon, and the acquisition of Earth's "late veneer," a reasonable geological model
can be envisioned to deliver the organic precursors needed to form the nucleobases
and ribose of RNA. A geological model having an environment with dry arid land
under a carbon dioxide atmosphere receiving effluent from serpentinizing igneous
rocks allows their conversion to nucleosides and nucleoside phosphates. Mineral
elements including boron and molybdenum prevent organic material from devolving
to form "tars" along the way. And dehydration and activation allows the formation of
oligomeric RNA that can be stabilized by adsorption on available minerals.
(View publication page for Steven Benner)
|
- Chemical genetics
- Synthetic biology
- Paleogenetics
- Planetary biology
- Systems biology
- The connection of natural history to the physical sciences
Look inside
With cartoons by Jake Fuller, Steven Benner explains how scientists tackle big questions: What is life? How did it begin? If we encounter life in our galactic travels, how would we know it? Learn more.
|
|